Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots
نویسندگان
چکیده
Purple carrots (Daucus carota ssp. sativus var. atrorubens Alef.) accumulate large amounts of cyanidin-based anthocyanins in their taproots. Cyanidin can be glycosylated with galactose, xylose, and glucose in sequence by glycosyltransferases resulting in cyanidin 3-xylosyl (glucosyl) galactosides in purple carrots. The first step in the glycosylation of cyanidin is catalysis by UDP-galactose: cyanidin galactosyltransferase (UCGalT) transferring the galactosyl moiety from UDP-galactose to cyanidin. In the present study, a gene from 'Deep purple' carrot, DcUCGalT1, was cloned and heterologously expressed in E. coli BL21 (DE3). The recombinant DcUCGalT1 galactosylated cyanidin to produce cyanidin-3-O-galactoside and showed optimal activity for cyanidin at 30 °C and pH 8.6. It showed lower galactosylation activity for peonidin, pelargonidin, kaempferol and quercetin. It accepted only UDP-galactose as a glycosyl donor when cyanidin was used as an aglycone. The expression level of DcUCGalT1 was positively correlated with anthocyanin biosynthesis in carrots. The enzyme extractions from 'Deep purple' exhibited galactosylation activity for cyanidin, peonidin and pelargonidin, while those from 'Kuroda' (a non-purple cultivar) did not.
منابع مشابه
A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots
Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-t...
متن کاملIdentification and Characterization of DcUSAGT1, a UDP-Glucose: Sinapic Acid Glucosyltransferase from Purple Carrot Taproots
Purple carrots accumulate abundant cyanidin-based anthocyanins in taproots. UDP-glucose: sinapic acid glucosyltransferase (USAGT) can transfer the glucose moiety to the carboxyl group of sinapic acid thereby forming the ester bond between the carboxyl-C and the C1 of glucose (1-O-sinapoylglucose). 1-O-sinapoylglucose can serve as an acyl donor in acylation of anthocyanins and generate cyanidin ...
متن کاملVegetative development and growth of carrot
١ Physiology of carrot growth and development Introduction • Carrot (Daucus carota L. ssp. Sativus (Hoffm.) Schübl. & G. Martens) originates from the wild forms growing in Europe and southwestern Asia (Banga 1984). • The western type of cultivated carrot is thought to derive from the anthocyanin-containing forms found in Afghanistan. • The first cultivated carrot types were purple or violet; ye...
متن کاملZeolite alleviates defense responses in drought stressed carrot (Daucus carota L.)
Drought stress is one of the main restrictions in plant production in arid and semi-arid regions. Adding superabsorbent agents that maintain water in the soil, is among strategies to cope with drought stress. Therefore, in order to investigate the effect of zeolite superabsorbent on the physiological properties of carrot plants, the experiment was carried out as a factorial in a completely rand...
متن کاملIsolation and characterization of a novel antifreeze protein from carrot (Daucus carota).
A modified assay for inhibition of ice recrystallization which allows unequivocal identification of activity in plant extracts is described. Using this assay a novel, cold-induced, 36 kDa antifreeze protein has been isolated from the tap root of cold-acclimated carrot (Daucus carota) plants. This protein inhibits the recrystallization of ice and exhibits thermal-hysteresis activity. The polypep...
متن کامل